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ABSTRACT 

With the availability of commercial parallel computers, 
researchers are examining new classes of problems for 
benefits from parallel processing. This paper presents 
results of an investigation of the class of search intensive 
problems. The specific problem discussed in this paper is 
the 'Least-Cost' Branch and Bound search method of 
deadline job scheduling. The object-oriented design 
methodology was used to map the problem into a parallel 
solution. While the initial design was good for a prototype, 
the best performance resulted from fine-tuning the algorithm 
for a specific computer. The experiments analyze the 
computation time, the speed up over a VAX 11/785, and the 
load balance of the problem when using a loosely coupled 
multiprocessor system based on the hypercube architecture. 

INTRODUCIlON 

Within the past decade, parallel computer architectures 
have been a subject of significant research efforts. 
Integrated circuit technology, high speed communications, 
along with hardware and software designs have made 
parallel computers much easier to build and much more 
reliable (6,10,14,15). Parallel processing has also proven to 
be an effective solution to certain classes of problems. 
Probably the most notable class is array or vector problems 
that run order-of-magnitudes faster on parallel architectures 
such as the Cray. Because of the recent proliferation of 
parallel computers, researchers are investigating other 
classes of problems for potential benefits from parallel 
architectures. Search intensive problems are one such class. 
Figure 1 illustrates, research in the area of parallel computers 
has been highly successful in producing several general 
purpose hardware designs. Clearly, this list indicates the 
availability of parallel processing system hardware; 
however, the application and software support systems are 
not as prevalent. Stankovic points out that "much of the 
distributed system software research is experimental work' 
(17: 17). He further emphasizes that "work needs to be 
done in the evaluation of these systems in terms of the 
problem domains they are suited for and their performance" 
(17: 17). 

Yet, another area of interest in parallel processing is the 
mapping of a problem to a parallel solution. Probably, the 
largest problem researchers face today in parallel computer 
systems is the inability of humans to decipher the inherent 
parallelism of problems that are traditionally solved using 
sequential algorithms. Patton identified a possible cause of 
this human shortcoming when he said, "While the world 
around us works in parallel, our perception of it has been 
filtered through 300 years of sequential mathematics, 50 

years of the theory of algorithms, and 28 years of Fortran 
programming" (1 1: 34). Basically, humans have not trained 
their thought processes to accommodate the concepts of 
solving problems in parallel. Because of this, without new 
parallel computing algorithms, parallel software development 
tools, and performance measuring techniques, parallel 
computing may never be fully exploited. 

Company Product 

Alliant Computer Systems C o r p o d  on FXjSeries 
Bols Beranek, and Newman Butterfly 
Connol Data Corporation 
Cray Research Inc. 
Digital Equipment Corporation 

ELXSI (a subsidiary of Trilogy Inc .) System 6400 
Encore Computer Corporation Multimax 
ETA Systems Inc. GF-10 

Floating Point Systems Inc. 
Goodyear Aerospace Corporation MMP 

Cyber 205 Series 600 
Cray-2 and X-MP 
VAX 1 In82 a d  784 

(a spin-off of Control Data Co rporntion) 
T Series 

IBM Corporation RP3 
Intel Scientific Cornputas ipsc 
Schlumberger Ltd. FAIM-I 
Sequent Computer Systems Jnc. 
Thinkiig Machines Corporation 

Balance 21ooO 
Connection Machine 

Figure 1: U.S. Companies Offering or 
Building Parallel Processors (6:753) 

Problem 

because a large class of problems that may benefit from 
parallel processing are search intensive, this research 
investigated the actual performance of a class of search 
problems on the Intel iPSC Hypercube computer. 

Two examples of the need for this research into parallel 
search algorithms and performance evaluations are elements 
of the Strategic Defense Initiative (SDI) and the Pilot's 
Associate (PA). The SDI Organization is investigating 
defensive weapon systems and battle management systems 
for a strategic defense. While researchers for the PA 
program are investigating flight domain systems that provide 
expert advice in critical mission functions, such as aircraft 
systems monitoring, situation assessment: mission planning, 
and tactics advising (5,12:102,16). The general approach to 
solve some of the battle management and PA problms uses 
traditional operations research (OR) and artificial inrelligence 

Because of the proliferation of parallel computers and 
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(AI) programming techniques. These techniques are based 
on a systematic search of the solution space of the problem. 
Hence, this research focuses on parallel search methods. 
And without loosing generality, the specific technique is 
parallel branch and bound. For example, the SDI battle 
management system must resolve the resource allocation of 
sensor and tracking satellites to defensive weapon systems 
(16: 4-5). Answers to such a problem involves a complex 
solution space with exponential computation time to find the 
optimal solution. Researchers plan to reduce the run time 
complexity using parallel computers. The ultimate goal is to 
find the proper combination of parallel computer architecture 
and parallel algorithm such that results can be calculated in 
"real-time", where "real-time" is that time interval in which 
an answer must be delivered(l0:8). 

While a general search definition is useful during the 
parallel design phases of research, a specific problem must 
be solved for an actual performance evaluation. To this end, 
the specific class of 'hast-Cost' Branch and Bound search 
is used, where the basis of the hypercube performance 
evaluation is the Deadline Job Scheduling (DJS) problem. 
In a DJS problem, a set of jobs or tasks are defined by a 3- 
tuple (Pi,di,ti), where 

pi = Penalty for not scheduling job i 
di = Deadline by which job i must be completed 
ti = Time to run the job i 

The goal is to find the largest subset of jobs that can run by 
their deadline while minimizing the total penalty incurred. 
This search uses both a ranking function to identify 
potentially good solution paths and two bound functions to 
eliminate needless searching in parts of the solution space. 
The DJS problem is characterized by exponential time 
complexity to find the optimal subset of jobs (worse case). 

The goals of this research can now be summarized as 
follows, 

1- Explore a design methodology to map a problem into a 
parallel computer. 

Because of the difficulties of mapping a problem to a 
parallel computer, a formal design approach is needed 
to help the programmer identify the parallel activity 
within a problem. Since the development and proof of 
a new design methodology is beyond the scope of this 
research, only traditional design approaches will be 
examined. 

2- Measure the performance of parallel branch and bound 
search on a parallel computer. 

Since some researchers with search intensive 
problems, such as the SDIO and Pilot's Associate, 
have requirements for 'real-time' processing, 
experiments must be run to examine the possibilities 
for speed up. The results of a parallel branch and 
bound test can be used as a benchmark for further 
research as well. 

3- Evaluate the hypercube as a suitable architecture for 
search algorithms. 

In conjunction with the development of a good parallel 
algorithm, the speed up of a problem is also a function 
of the parallel computer architecture. Therefore, as 
Stankovic pointed out, the parallel architecture must be 
evaluated to identify their suitable problem domains. 

Parallel Processing Issues 

Two fundamental issues of parallel processing form a 
basic set of constraints for parallel problem solving. Simply 
stated, the first concept of maximum parallelism places a 
restriction on a parallel solution. This constraint may take 
several forms. First, the problem may inherently have 
limitations and dependencies that cannot be overcome. 
Second, a poor algorithm may inhibit parallel activity. 
Finally, parallel computer architectures have been targeted to 
solve specific classes of problems. 

The second parallel processing issue deals with the 
mapping of a problem into a parallel solution. For humans. 
thinking in parallel does not come naturally. Therefore, a 
design methodology is needed to describe a problem such 
that parallel activity can be identified. 

Overview of the Paper 

In the introduction, a look at the need for this research, 
the definition of the problem, and the description of two 
parallel processing issues identified fundamental concepts 
used throughout this research. In the next section, a 
description of the hypercube computer presents the parallel 
environment for this research. Then, the definition of search 
and the parallel branch and bound design is reviewed. 
Following the design, the experimental results and 
conclusions of this research complete the paper. 

HYPERCUBE ARCHITECTURE 

The parallel environment for this research is the Intel 
iPSC Hypercube computer. Initial research on the 
hypercube, known as the Cosmic Cube, was conducted by 
Professor Charles L. Seitz at the California Institute of 
Technology (8,14). The basis of the hypercube computer 
can be described by the process model of computation (14). 
Simply stated, the process model describes the interaction of 
processes using message passing instead of shared 
variables( 14:22). Using such a model, "a programmer can 
formulate problems in terins of processes and 'virtual' 
communication channels between processes" (14:23). The 
Intel iPSC hypercube used in this research adheres to the 
process model of computation in two ways. First, 
programmers define and encapsulate processes on any iPSC 
node. In fact, several processes can be placed on each iPSC 
node. Second, the iPSC operating system provides a set of 
message passing primitives for interprocess communication. 
The processor interconnection strategy that provides good 
message passing properties to support this model of 
computation is called the binary-n-cube or hypercube (see 
Figure 2) (14,15,18). As described by Wu, the binary n- 
cube is a network of 2" processors where each node has n 
neighbors (18:239). The number n also describes the 
dimension of the cube. For example, a 3-dimension cube 
has 23 nodes and each node has 3 neighbors. Node 
identification consists of a binary number of length n (see 
Figure 2). 
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Figur- 1: Three-Dimension Cube Structure, with 
. vertices labeled &om 0 to 7 in binary (1566). 

In addition to the message passing architecture, a 
programmer can configure the hypercube into several logical 
strucms, such as ring, tree, grids, torus, and bus using 
specific message passing schemes (8,14). Using these 
structures, efficient nearest neighbor communications is 
maintained and the structure of the parallel solution can be 
designed to match the structure of the problem. 

FUNDAMENTALS OF SEARCH 

Search is a basic Operations Research (OR) and Artificial 
Intelligence (AI) programming technique. Such a strategy is 
used when problems cannot be solved using direct methods 
(i.e. formulas, algorithms, etc.) (1355). Several specific 
search strategies have been developed (2,7,13). Each 
strategy varies the way the solution space of the problem is 
examined for answers. Sometimes the entire solution space 
is blindly searched for an answer. While other search 
techniques use heuristics or rules to guide through the 
solution space. The solution space for a search is typically 
represented using a tree organization (7:325). Horowitz and 
Sahni describe the search tree as follows (7:325-329). The 
root of the tree represents the initial state of the problem (see 
Figure 3). Each nonterminal node in the tree represents a 
problem state in the search. The state space of a search is 
defined as the collection of all paths from the root node to 
any node in the tree. 

I 
Figure 3: Search Tree with Node Definitions 

Even though trees are used to represent the solution space of 
a search, the tree is usually not stored explicitly in the 
computer. Because search problems have the additional 
overhead of combinatorial explosion due to the branching 
factor or the depth of the tree, only portions of the tree 

needed to solve the problem are kept in storage. For this 
research, branch and bound, the general form of a state 
space search, is used. By manipulating two functions, a 
ranking function and a bound function, branch and bound 
can be used to model 'blind' as well as intelligent search. 
While 'blind' search techniques, such as Depth-First and 
Breadth-First search, do not use knowledge of the problem 
domain to control the search process, other search methods, 
called intelligent search, try to narrow the search space, 
shorten the search time, and reduce the storage needed by 
applying knowledge of the problem domain to control the 
search. The following actions are used to meet the three 
goals of 'intelligent' search (2:59), 

1- Decide which node to expand next. 
2- Select the most promising successors when 

3- Eliminating or pruning the search tree. 
expanding a node. 

To represent a node in the branch and bound search space, a 
solution vector ( ~ 1 . ~ 2 ,  ..., xn), is used (7:323). Each Xi is 
constrained by explicit and implicit constraints. The explicit 
constraints define the range of values that each xi can be 
assigned. For example, the solution vector for a 4-Task 
Deadline Job Scheduling problem is (xi.x2,x3,x4). The 
explicit constraints for this problem are simply Xi E (0,1} , 
where 1 denotes that task i is included in the schedule and 0 
denotes that job i is not included in the schedule. For 
instance, a valid solution vector for the 4-Task problem 
would be (l,l,l,*). This vector represents the search state 
where jobs 1,2, and 3 have been scheduled and job 4 has 
not been scheduled. To help the reader in understanding the 
DJS constraints,, the following job set will be used in 
examples throughout this section (16384), 

kb pi di fi 
1 5 1  1 
2 1 0 3  2 
3 6 2 1  
4 3 1  1 

Using the definition of explicit constraints, the solution 
space of the example job set is depicted in Figure 4. The 
grey node identifies the example solution vector (l,l,l,*). 
The second set of constraints, implicit constraints, define 
relationships among the various xi's. The nodes in the 
solution space that meet both the explicit and the implicit 
constraints define j=anmswer nodes. The first implicit constraint 
for the DJS problem is called the Deadlinflotal Time 
Bound. This constraints requires a job to be scheduled such 
that the total run time for all jobs included in the schedule 
does not exceed the maximum deadline. Referring to the 
example 4-Job problem above, the solution vector (l,l,*,*) 
passes the Deadlinefl'otal Time implicit constraint because 
the maximum deadline of jobs 1 and 2 is 3 and the total run 
time of jobs 1 and 2 equals 3. However, the solution vector 
(l,l,l,*) does not pass the Deadliinenotal Time Bound 
because the maximum deadline of jobs 1,2, and 3 equals 3 
and the total run time of those same jobs equals 4. 

The second implicit constraint, CosWpper Bound, for 
the DJS problem is based on the cost of the node and a 
global upper bound. The cost function is calculated in two 
steps (16386). First, find m where, 

m=max(iIiE S,} 
Sx = the subset of jobs examined a node X 
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Figure 4: Example 4-Job Deadline Job Scheduling Solution Space 
Next, compute the cost of node X using the following 
equation, 

c'(X) = Fi 

where J = the set of jobs included in the schedule at node X. 

i <  rn 
i e J  

The cost of a node translates to the total penalty incurred of 
all jobs that have not been scheduled so far. The cost of 
each node of the example job set is shown inside the circles 
of Figure 4. For example, the cost of solution vector 
(1,0,*,*) equal 10 because, 

m = m a x ( i I i E  Sx) = 2  

J =  (1) 

i E (2.3.4) 

The second part of the Cost/Upper Bound constraint 
involves calculating the upper bound of node X using the 
following function, 

U(X)  = F. 
1 

i c J  

The value of the upper bound identifies the maximum cost 
solution node inthe subtree rooted at node X. For example, 
vector( 1,0,*,*) of the tree in Figure 4 has an upper bound of 
14 since the cost of solution node (O,l,O,O) equal 14 and 

solution node (0,1,0,0) is the highest cost node in the 
subtree. During the seach, the lowest upper bound is 
maintained as a global bound. The gobal upper bound is 
defined by the following function, 

global upper bound = min( U(x),current upper bound) 

A child of the current node being expanded is added to the 
list of 'live nodes' (nodes that will be expanded later) if the 
cost of the child is less than the global upper bound. (Note: 
the list of 'live nodes' is maintained in Least-Cost order, 
hence, the name Least-Cost Branch and Bound). 

PARALLEL DESIGN 

One goal of this research was the investigation of a 
parallel design methodology. After reviewing several 
common design strategies, the object-oriented design 
methodology was selected for the research (3,4). The basic 
concept of an object design is the decomposition of the 
problem into objects, operations, and communications 
among the objects. Because the hypercube architecture is 
defined by the process model of computation, where 
'processes' communicate using 'messages', parallel 
solutions defiied by an object design map naturally into the 
hypercube. The programmer can describe the problem as 
fine-grained objects using the object model. These objects 
can be mapped directly to hypercube processes, or for 
efficiency and reduced communications, a collection of 
objects can be implemented as a hypercube process. Figure 
5 shows the configuration of the parallel branch and bound 
search objects and the communications dependencies among 
those objects. The first process is called the Control 
Process. It is defined by the objects in the top processor box 
(see Figure 5). The meta-controller, terminate check, and 
bound check serve as global control throughout the parallel 
search. The Control Process resides in Node 0 of the 
hypercube. The remaining nodes contain the Worker 
Process. The task of each Worker Process is to find the best 
answer to a subproblem. A subproblem for a branch and 
bound search is equivalent to searching a subtree of the 
solution space for the best answer in that subtree. 
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Figure 5:  Object Visibility Diaaam 

During the search, the Control Process monitors the 
progress of the search by creating an initial set of 
subproblems to solve, sending those subproblems to Worker 
Processes, and terminating the search. Upon receiving a 
problem, the Worker Process finds the best answer (in that 
subme). Once the entire subtree has been examined, the 
Worker Process posts a 'work request' to the Conaol 
Process and waits for additional work. The entire problem 
is finished when the Control Process does not have any 
problems to solve and all Worker Processes have posted 
'work requests'. This translates to a machine state where no 
more work is available and all workers need a problem to 
solve. 
EXPERIMENTAL RESULTS 

Three measures, Computation Time, Speed Up, and 
Load Balance, were used to categorize the performance of 
the parallel search problem on the iPSC Computer. First, 
Computation Time measures the run time of a problem. 
Because the parallel computational environment involves 
additional processes, one representation of the total 
computation time of an algorithm is defined by the following 
formula (1 :95), 

TN = Ts + Tc + Tw (1) 
where 

TN = Computation Time for N processors 
T, =StartUpTime 
Tc = Processor Computation Time 
Tw = Wind Down Time 

Start Up Time, T,, measures the time to initialize the parallel 
processor before any parallel computation begin. Start up 
may include such things as initial parsing of the job, initial 
message transfers, or down load time of the programs to the 
parallel machine itself. The second term, processor 

computation time, measures the time the computer spends 
actually solving the problem. This term is common in 
sequential processor run time analysis. The final term in 
equation 1 is wind down time. This time accounts for the 
gathering of results from the various processors in the 
computer and analyzing or tallying those final results. 

Up, compares the time to compute a solution using one 
processor and the time to compute a solution using N 
processors. It is defined as follows (14:28), 

The second measure for the performance evaluation, Speed 

S = T ~ + T N  (2) 
where 

T i  = Time to computer a result with one processor 
TN = Time to computer a result with N processors (Eqn 1) 

The speed up of a problem run in parallel is intuitively easy 
to understand. If a problem can be parsed into N sub- 
problems, with each subproblem taking 1/N of the total 
computation, then the maximum speed up of N is achieved. 
The perfect speed up, N, is highly unlikely because of the 
overhead of start up and the wind down time. 
Communications among processing elements also induce 
limitations on this measure. 

Finally, the third measure, load balance, may be helpful 
in identifying computation bottlenecks. Because of the 
nature of the design and the branch and bound problem, the 
'load' is defined to be the number of nodes expanded by a 
Worker Process. When plotted against the average load 
performed across all Worker Processes, balanced and 
unbalanced work loads can be identified. Single-Instruction- 
Multiple-Data (SIMD) problems that partition data to 
promote parallel activity tend to have regular communication 
and computation cycles. These classes of problems show 
the best performance under balanced work loads (9). Since 
parallel search is a Multiple-Instruction Multiple-Data 
(MIMD) problem, the communication and computation 
cycles cannot be guaranteed to be regular. Hence, the load 
balance measure must be evaluated along with the other 
performance measures before drawing conclusions. 

Baseline Performance 

The baseline of performance for this research is a Digital 
Equipment Corporation VAX 11/785 running the 4.2 BSD 
(Berkeley Software Distribution) UNDC operating system. 
The configurntion of the machine used for this research has 8 
Megabytes of main memory and 1800 Megabytes of disk 
storage. The sequential versions of the Deadline Job 
Scheduling problems were programmed in C Language, and 
the time information was obtained using the UNIX "times" 
function. Of the four parameters measured by the "times" 
function, this research focused on user-time. The user-time 
of a process is that time devoted to computation. The 
overhead associated with system calls, page swaps, etc. was 
not used for two reasons, (1) this research is actually 
interested in compute time of the algorithm and not operating 
system overhead; and (2) the VAX is under various system 
loads during the course of the experiments which would 
influence system time and the overall timing data. 

Parallel Performance 

First, the DJS problem was tested on the Intel iPSC 
simulator running on the VAX. While the simulator creates 
a good environment to learn how to program the iPSC, it 
does not show true parallel activity. Hence, it should not be 
used to fine-tune a problem. After porting the code from the 
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simulator to the actual IPSC, the original design was 
modified to achieve the best computation times. It should be 
noted that the object design worked well for an initial 
implementation, but the best perfoxmance results were 
attributed to fine tuning on the actual hardware. The only 
part of the parallel DJS used for fine-tuning was the iPSC 
Control Process. This process has the responsibility to 
create the initial set of problems to solve. At some point, it 
becomes beneficial to stop creating problems and to start 
handing them out to worker nodes. It should be noted the 
results of these experiments have fine-tuned to large problem 
sizes. For the parallel experiments, job sets from 4-Jobs to 
25-Jobs were tested on six cube sizes, d-1, d-2, d-3, d-4, 
and d-5, where d = dimension). The d-0 cube could not 
create a data structure large enough to solve large DJS 
problems. Timing results for all runs was calculated using 
the iPSC Clock function on each node of the hypercube. 
Since the resolution of the iPSC Node Clock function is 
1160th of a second, some of the computation times were 
unmeasurable. The data in this section has been plotted for 
comparison and to show trends. 

Before analyzing the results of the job scheduling 
experiments, a description of the test data is necessary. 
Since the deadline job scheduling solution uses least-cost 
branch and bound, them time to schedule a set of n+ l  jobs 
may take less time than scheduling n jobs. Therefore, two 
peudqequivalent classes of problems were devised such 
that the larger the job set created a more difficult problem to 
solve. Two reasons for creating @equivalent classes 
are, (1) the proof of equivalent classes of jobs is beyond the 
scope of this research; and (2) job set with these 
characteristics make the analysis a bit easier. 

As described in a previous section, each job is defined by 
a 3-tuple (pi,di,ti), where pi is the penalty incurred if the job 
is not scheduled, di is the deadline when the job must be 
finished running, and ti is the time to run job i. With this 
information, the first set of problems (see below) guarantees 
that all jobs can be scheduled. The VAX solves this problem 
in O(n) time. 

p. = 1, V i 
1 

I Deadline Job Scheduline . 

2 t s m i n ( d i )  
i =  1 i 

I 

The second pseudo-equivalent class is solved in exponential 
time by the VAX and it is described with the following 
values for the job 3-tuples, 

140 

12n 

100 

80 

E-nodes 
Expanded 60- 

40 

m 

t .  = 1 
1 

p = 2*t. 
i 1 

T 

!. 
Load Balance - Deadline Job Scheduling 

Problem Set #1 
20-Jobs solved on an iPSC D 4  

.. 

.. 

.. 

.. 

0 . : : : : : : : : : : ; : : .  

First, an analysis of the O(n) job set. Parallel processing 
appears to show no reductions in the time order complexity 
of O(n) problems (see Figure 6). The best performance was 
attributed to the iPSC d-1 and the best speed up was 
approximately 0.33 over VAX. Since this search problem 
degenerates to an examination of the left-most branch of the 
search tree, the problem does not map well to a parallel 
processor. The Load Balance analysis shows this result (see 
Figure 7). Basically, this problem cannot run in parallel. 
For small problem sizes, (scheduling 15 jobs or less) only 
one processor solves the problem while for large problem 
sizes, two iPSC worker nodes are used. This problem re- 
enforces the concept of maximum parallel activity because of 
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Figure 8: Deadline Job Scheduling- Problem Set #2 
Computation Time 

concurrently, the global upper bound converges quickly to 
the best upper bound of the entire search space. Once the 
upper bound converges, the workers no longer search the 
subtrees. They only prune the remaining search space. In 
the case of the d-5 hypercube, the Control Process generates 
128 initial problems to solve. At this point the upper bound 
has all ready converged, and the search quickly ends with 
the workers just pruning the search space and never actually 
searching the subtrees. 

Load Balance - Deadline Job Scheduling 
Problem Set #2 

S J o b s  solved on an iPSC D-4 

Expanded 3ooo 

"1 loo0 

* *  

0 0  
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Node Number 
Figure 9: Deadline Job Scheduling- Roblem Set #2 

Load Balance of scheduliig 15-Jobs on an iPSC D-4 

CONCLUSIONS 

The main objective of this research was the performance 
evaluation of search problems on the hypercube architecture. 
First, conclusions from the other research goals. The results 
of the first goal identified the object-oriented design 

methodology as a good design approach to map a problem 
into a parallel solution. The object model worked well for 
this research. The results of the object design resulted in a 
fine grained mapping of the problem space, and the 
implementation of the design focused on collecting several 
objects into coarse grained iPSC processes. During the 
design, details of the branch and bound problem were not 
overlooked and during the implementation, inefficiencies of 
communications were reduced. Even though the initial 
design needed fine tuning to achieve the best performance, 
the implementation of the initial design created a good 
prototype. As a recommendation for future research, the 
object design methodology should be extended to other 
parallel processors such as shared memory machines or 
other hypercube architectures. As noted with this research, 
an object design worked well for the hypercube because of 
the similarity of object design and the process model of 
computation. Additional tests of object-oriented design will 
test the flexibility and suitability of the design methodology 
as a general approach to map a problem into a parallel 
architecture. 

The second goal of this research was the performance 
evaluation of search problems on a parallel processor. As 
the results show, a sequential problem solving technique, 
like search, can be mapped to a parallel processor and speed 
ups over traditional sequential machines can be achieved. In 
fact, over a narrow range, the parallel solution reduced the 
time order complexity of the problem. But, the results of the 
O(n) job set also re-enforced the concept of maximum 
parallel activity due to limitations within the problem. 
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Finally, the third goal of this research was to examine the 
suitability of the hypercube architecture to solve search 
problems. Branch and bound is a 
technique with centralized control. The parallel solution 
presented in this paper was mapped onto an extremely 
loosely coupled architecture. Even though this research 
successfully produced speed ups, the nature of the 
hypercube architecture and the nature of the problem are not 
similar. Therefore, parallel search should be examined on 
other, more tightly coupled architec-tures, such as shared 
memory machines. Yet another approach to speed up search 
problems is to design new algorithms instead of mapping 
sequential techniques to parallel processors. 

programming 
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